国产亚洲AV自拍|av中文字幕一区|资源在线观看一区二区|亚洲影视久久亚洲特级性交|一级做一级a做片爱免费观看|欧美另类亚洲色婷婷精品无码|亚洲青青草免费一区|青青草免费成人网|91久久国内视频|五月天丁香久久

One paper has been accepted by TIP

Our paper entitled "See Degraded Objects: A Physics-guided Approach for Object Detection in Adverse Environments" has been accepted by IEEE Transactions on Image Processing (TIP).

 

See Degraded Objects: A Physics-guided Approach for Object Detection in Adverse Environments

Weifeng Liu, Jian Pang, Bingfeng Zhang, Jin Wang, Baodi Liu, Dapeng Tao

In adverse environments, the detector often fails to detect degraded objects because they are almost invisible and their features are weakened by the environment. Common approaches involve image enhancement to support detection, but they inevitably introduce human-invisible noise that negatively impacts the detector. In this work, we propose a physics-guided approach for object detection in adverse environments, which gives a straightforward solution that injects the physical priors into the detector, enabling it to detect poorly visible objects. The physical priors, derived from the imaging mechanism and image property, include environment prior and frequency prior. The environment prior is generated from the physical model, e.g., the atmospheric model, which reflects the density of environmental noise. The frequency prior is explored based on an observation that the amplitude spectrum could highlight object regions from the background. The proposed two priors are complementary in principle. Furthermore, we present a physics-guided loss that incorporates a novel weight item, which is estimated by applying the membership function on physical priors and could capture the extent of degradation. By backpropagating the physics-guided loss, physics knowledge is injected into the detector to aid in locating degraded objects. We conduct experiments in synthetic foggy environment, real foggy environment, and real underwater scenario. The results demonstrate that our method is effective and achieves state-of-the-art performance. The code is available at https://github.com/PangJian123/See-Degraded-Objects.

 


登錄用戶可以查看和發(fā)表評論, 請前往  登錄 或  注冊
SCHOLAT.com 學(xué)者網(wǎng)
免責(zé)聲明 | 關(guān)于我們 | 用戶反饋
聯(lián)系我們: